Search for the SM Higgs boson in the di-tau final state at Tevatron

<u>Pierluigi Totaro</u>,

University of Trieste

On behalf of the

CDF and DØ collaborations

35th International Conference on High Energy Physics
Paris, July 23rd 2010

Outline

- Standard Model Higgs production and decay at Tevatron
 - Low mass searches
- Motivation of the $H \rightarrow \tau \tau$ searches
- Analysis strategies for CDF and DØ experiments
- Results: CDF 2.3 fb⁻¹ DØ 4.9 fb⁻¹
- Conclusions

Higgs production and decay at Tevatron

Primary production modes:

Higgs direct production dominates in the whole mass range probed at Tevatron.

Principal decay modes:

H→**bb** for M_H <135 GeV/c² **H** → **WW*** for M_H >135 GeV/c²

Low Mass Higgs searches at Tevatron

Low mass Higgs $(M_H < 135 \text{ GeV/c}^2)$

- 1) gg→H→bb overwhelmed by QCD multijet processes
- 2) WH→Ivbb, ZH→vvbb, ZH→Ilbb (associated production) leptonic decays of W/Z and b-tagging allow to keep bkg under control
- B) May additional secondary channels help in the Higgs hunting? $H \rightarrow \tau \tau$ is a complementary process with no negligible B.R.

H→ττ searches: motivation

 $H \rightarrow \tau \tau$ branching ratio is small(<10%)

BUT

- 1)Different channels can be studied simultaneously
- 2)Direct production and VBF become accesible
- 3)Hadronic W/Z decays in the associated production can be considered

What about tau leptons?

- Heavy particles: 1.78 GeV/c²
- Short lived: mean lifetime 291 ps ($c\tau$ =87 μ m) Detectable only through their decay products
- Decay modes:

$$\begin{array}{c|c}
-\tau \rightarrow \nu_{\tau} \nu_{e} e \text{ (B.R.} \sim 17\%) \\
-\tau \rightarrow \nu_{\tau} \nu_{\mu} \mu \text{ (B.R.} \sim 17\%) \\
-\tau \rightarrow \nu_{\tau} X_{h} \text{ (B.R.} \sim 65\%)
\end{array}$$

Look for isolated electrons or muons

Hadronic decays:

1-prongs
$$\tau^{\pm} \rightarrow \nu_{\tau} + h^{\pm} + n(\pi^{0})$$

3-prongs $\tau^{\pm} \rightarrow \nu_{\tau} + h^{\pm} h^{\pm} h^{\pm} + n(\pi^{0})$

- Di-tau decay combinations:
 - Hadronic+hadronic: 42 % overwhelming QCD
 - Leptonic+hadronic: 46 % golden channel
 - ee/μμ: 6 % overwhelming Drell-Yan
 - eμ/μe: 6% clean signature but low B.R.

Hadronic tau identification

Very challenging task

The signature: narrow calorimeter clusters with low multiplicity tracks

QCD jets can easily lead to fakes

Reconstruction: very difficult due to the not detected neutrinos; only the "visible" fraction of the energy can be used to build the P_{had}(p,E)

Identification: - based on calorimeter and track isolation requirements

- <u>Multivariate selections</u> are better than rectangular cut to exploit correlations and provide a good τ -jet separation
- best performances achieved by considering separately different tau categories

Hadronic tau identification

Hadronic tau identification

Strategies for the analysis 1

SIGNATURE SEARCH: similar approaches for CDF and DØ

looking for the leptonic+hadronic di-tau decay modes.

good compromise between:

- high hadronic decay B.R.
- good background rejection
 provided by e/μ identification

jets in the final state optimize sensitivity for $qqH \rightarrow qq\tau\tau$, WH $\rightarrow qq\tau\tau$ and ZH $\rightarrow qq\tau\tau$. gg \rightarrow H events with jets from ISR are also included


```
One isolated lepton (e/\mu) p_T > 10 GeV/c One hadronic tau p_{TVIS} > 15 GeV/c Opposite charges
```

≥1calorimeter jet (DR=0.4 cone):

- E₊ > 20 GeV
- EM fraction < 0.9
- pseudorapidity: $|\eta| < 2.5$


```
One isolated muon p_T > 15 \text{ GeV/c}
One 1(3)-prong had. tau p_{TVIS} > 15(20) \text{ GeV/c}
Opposite charges
```

≥2calorimeter jets (DR=0.5 cone):

- $-E_{T} > 20 \text{ GeV}$
- pseudorapidity: $|\eta| < 3.4$

Strategies for the analysis 2

BACKGROUND ESTIMATION

IRREDUCIBLE PHYSICS CONTRIBUTIONS

 $Z \rightarrow \tau \tau$, top-antitop, dibosons : from MC

BACKGROUND FROM MISIDENTIFIED LEPTONS

W+jets, γ + jet,multijet: based on MC and data driven techniques

THE CHALLENGE: evaluate jet $\rightarrow \tau$ fake rate. Extremely difficult.

To estimate multijet bkg, both CDF and DØ use same-sign (SS) data:

Corrections for W+jets OS/SS asymmetries

SS

0-jet control region: background testing

Signal channel: ≥ 2 jets

This search relies on a good jet multiplicity modeling.

Thus, one of the main sources of systematics for MC-derived processes which has been considered is the uncertainty on the the Jet Energy Scale (JES)

Signal channels: 1 jet and ≥ 2 jets

Signal channels: 1 jet and ≥ 2 jets

	Data	Σ Bknd	t ar t	add-on W+jets	$Z \rightarrow \tau \tau$	$Z \rightarrow ll$	DB	fakes from SS
1 jet	965	921.7	4.6	45.8	357.9	26.4	3.9	483.0
≥ 2 jets	166	159.4	16.3	14.1	59.3	4.8	0.9	64.0

	HZ			
1 jet	0.050	0.091	0.070	0.535
≥ 2 jets	0.099	0.150	0.099	0.129

Source	Uncertainty (%)		
	1jet	$\geq 2 \text{ jets}$	
JES Drell-Yan	+6.2	+14.2	
JES $t\bar{t}$	-7.7	+3.2	
$\rm JES~WW/WZ/ZZ$	+7.1	+11.7	
XS Drell-Yan	+2.2	+2.2	
Acc.Drell-Yan	+2.3	+2.3	
$XS t\bar{t}$	+10.0	+10.0	
XS WW/WZ/ZZ	+6.0	+6.0	
PDF bkgs	+1.0	+1.0	
SS data	+10.0	+10.0	
SCALE W+jets	+18.0	+30.0	
tau ID: N_{obs}	+2.8	+2.8	
tau ID: N_{SSdata}	-3.3	-3.3	
tau ID: N_{Wjets}	-0.3	-0.3	
tau ID:XS Drell-Yan	-2.1	-2.1	
tau ID:Acc.Drell-Yan	-2.2	-2.2	

Main background Contributions: -jet→τ fakes in QCD multijet and W+jets

 $-Z \rightarrow \tau \tau$

yJet Energy Scale (JES) uncertainty may affect good jet multiplicity modeling.

multiplicity modeling.

Systematic uncertainties related to the BDT-based Tau ID algorithm, evaluated in the 0-jet C.R.

Signal vs. Background discrimination

- Good agreement in almost all kinematic distributions
- Expected signal is much smaller than background uncertainties
- S/B is small \rightarrow counting experiment is not possible.
- Need to exploit all the event information to extract S from BKG
 A multivariate technique allows us to combine the discriminating power of different kinematical and topological distribution into

Multivariate techniques

Both DØ and CDF employ a multivariate technique based on the

BOOSTED DECISION TREE method

-train a mixture of signal processes vs different backgrounds: **top, Z+jets, multijet** -combine outputs to maximize Signal vs Background rejection - 1 jet and 2 jets separately

- train each signal process vs
different backgrounds: top,
Z+jets, W+jets, multijet
-combine outputs to maximize
Signal vs Background rejection

Multivariate discriminants

Multivariate discriminants

Results: 95% C.L. upper limit

Mass ranges explored:

 $100 - 150 \text{ GeV/c}^2$

CDF Expected limits: 23.4 – 82.6

CDF Observed limits: 25.3 – 70.0

Mass ranges explored: 105 – 145 GeV/c²

DØ Expected limits: 13.4 - 61.4

DØ Observed limits: 21.9 - 86.0

Summary

- We presented the latest results of the SM Higgs searches at the Tevatron in the di-tau decay channel
- •These analyses are aimed at completing the Higgs decay modes explored by CDF and DØ, with the purpose of increasing the experiment sensitivity in the low mass Higgs region
- CDF: 2.3 fb⁻¹ expected(obs.) limit @ $M_H = 115 \text{ GeV/c}^2$ 24.5(27.9)
- DØ: 4.9 fb⁻¹ expected(obs.) limit @ $M_H = 115 \text{ GeV/c}^2$ 15.9(27.0)
- Many improvements beyond luminosity scaling have been introduced since the previous stage of the analyses: new tau identification algorithms, increased acceptances, more sophisticated multivariate methods...
- Still working to add more data and get further improvements!

BACK-UP SLIDES

The Tevatron

•1 Km radius superconducting sincrotron Proton-antiproton collisions at 1.96 TeV Chicago Two detectors at interaction points: CDF and DØ Collider Run II Peak Luminosity 4.50E+32 4.00E+32 3.50F+32 3.00E+32 2.00E+32 1.50E+32 1.00E+32 Luminosity (pb⁻¹ 9000 8000 7000 6000 5000 - peak luminosity 4 X 10³² cm⁻²s⁻¹; 4000 3000 - weakly integrated lum. ~60 pb⁻¹; Delivered 2000 Acquired -8.8 fb⁻¹ delivered per experiment (7.4 fb⁻¹ on tape)¹⁷⁰ 1000 2000 3000 4000 5000 6000 8000

CDF and DØ detectors

- Silicon Tracking $|\eta| < 2-2.5$
- Drift cell Tracker 1.4 T, $|\eta|$ < 1.1
- Scintillator Cal. $|\eta| < 3.2$
- Muons: |η|<1.5

- Silicon tracking $|\eta| < 3$
- Fiber tracker 1.9 T, $|\eta|$ <1.7
- LAr/DU calor. |n|<4
- Muons: $|\eta| < 2$

The Boosted Decision Tree method

A DECISION TREE: a sequence of rooted binary splits

Ingredients: 1) a <u>training sample</u> for signal and background
2) a set of <u>discriminating</u> <u>variables</u>

At the end of a splitting, leaves are classified as signal-like (event score +1) or background-like (event score -1), accordingly to the purity.

BOOSTING: N trees are created. Events misclassified in the N-th tree, are given an <u>increased weight</u> in the (N+1)th tree.

An event final score is given by the weighted average of different tree outputs